43 research outputs found

    Geometric soft robotics: a finite element approach

    Get PDF
    Enabling remote semi-autonomous operations in hazardous environments is a challenging technological problem, given the difficulty to access in confined and constrained spaces using classical robotic systems. Inspired by biological trunks and tentacles, soft continuum robots constitute a possible solution to this problem, for their ability to traverse confined spaces, manipulate objects in complex environments, and conform their shape to nonlinear curvilinear paths. The need of reaching difficult-to-access industrial sites for maintenance and inspection procedures or anatomical sites for less invasive robotic surgery mainly motivates the current research. Despite the recent advances in the design and fabrication of soft robots, the community still suffers for the lack of a consolidate modeling framework for simulating their mechanical behavior. Such a modeling framework is the necessary condition for developing new physical design and control strategies, as well as path planning algorithms. Indeed, despite their appreciable features, soft robots usually generate undesired vibrations during normal procedures. This is one of the main reasons which still limits their potentially wide use in real scenario. Realistic modeling frameworks might leverage the development of model-based predictive controllers to compensate for the undesired vibrations, as well as design concepts and optimized trajectories to avoid the excitation of the vibration modes of the mechanical structure. The main objective of the thesis is to develop a unified mathematical framework for simulating the mechanical behavior of soft continuum robotic manipulators, which can also accommodate the dynamic simulation of classical rigid robots. The computer implementation of this theoretical framework leads to the development of SimSOFT, a physics engine for soft robots. The formulation has been validated through literature benchmark and some applications are presented. One of the major strengths of the framework is that it can accommodate the realistic simulation of kinematic trees or loops constituted either by rigid or soft arms connected by rigid or flexible joints.The simulation of hybrid mechanisms, composed by classical rigid kinematic chains and soft continuum manipulators, which can be used to have larger dexterity in smaller workspaces, as they are easily to miniaturize, is thus possible. To the best of the author's knowledge, the mathematical models developed in the thesis constitute the first attempt in the robotics community towards a unified framework for the dynamics of soft continuum multibody systems

    From Differential Geometry of Curves to Helical Kinematics of Continuum Robots Using Exponential Mapping

    Get PDF
    Kinematic modeling of continuum robots is challenging due to the large deflections that these systems usually undergone. In this paper, we derive the kinematics of a continuum robot from the evolution of a three-dimensional curve in space. We obtain the spatial configuration of a continuum robot in terms of exponential coordinates based on Lie group theory. This kinematic framework turns out to handle robotic helical shapes, i.e. spatial configurations with constant curvature and torsion of the arm

    Concept Generation and Preliminary Prototyping of a Tailored Smart Glove with Capacitive Pressure Sensors for Force Grip Analysis in Cycling

    Get PDF
    Design methods for sports engineering allow to improve the world around the athlete. In cycling, a sport device that can be useful to reduce and monitor the risk of injuries is a smart glove equipped with pressure sensors. The literature underlined how the current design methods lack the comprehensive consideration of sensors integration for force analysis at the handlebar. Furthermore, the majority of existing solutions is based on resistive pressure sensors. In this work, we present mainly two advancements with respect to the state-of-the-art: (1) user-centered design methodology for the glove development, which allows to take care about the main design parameters which involve the cyclist, namely her/his anthropometric characteristics and her/his sport gesture analysis (achieved by the pressure analysis on the handlebar) during classic grip position of cycling (i.e., top grip); (2) prototyping of custom-made capacitive pressure sensors instead of classic commercial resistive pressure sensors. The work involves the concept generation, the selection of the optimal concept through Kano and Quality of Function Development as well as the preliminary prototyping of one capacitive pressure sensor, realized using a fabrication process involving additive manufacturing techniques and silicon molding

    conceptual design and control strategy of a robotic cell for precision assembly in radar antenna systems

    Get PDF
    Abstract Dip-Brazing is a metal-joining process in which two or more metal items are joined together using a low-temperature melting element as filler. In telecommunication field, this process is used to fabricate radar antenna systems. The process begins with the assembly of the parts constituting the antenna and the thin filler sheet used to join the parts. The mechanical deformations of the micro-pins of the parts allow to obtain a more compact mechanical assembly, before than the antenna system is subjected to an immersion cycle used for adjoining the parts. In this work, we present the design of the robotic cell to automate the assembly procedure in the aluminum dip-brazing of antenna in MBDA missile systems. In particular, we propose a robotic cell using two stations: i) assembly, using a SCARA manipulator; ii) riveting, using a three-axis cartesian robot designed for positioning a radial riveting unit. Motion control of the robots and scheduling of the operations is presented. Experiments simulated in a virtual environment show an almost perfect tracking of the designed trajectories. The standardization of the procedure as well as the reduction of its execution time is thus achieved for the industrial scenario

    User-centered approach for design and development of industrial workplace

    Get PDF
    AbstractIn this paper, we propose a user-centered approach for the design of ergonomic workplaces. The method is based on the evaluation of subjective opinions and objective measures from the worker, while performing the industrial tasks. The ergonomic design of industrial workplaces will have impact in reducing the musculoskeletal disorders of workers

    Using a Soft Growing Robot as a Sensor Delivery System in Remote Environments: A Practical Case Study

    Get PDF
    Soft continuum robots are a new class of robotic devices, which are very promising for enabling measurement applications especially in remote, difficult-to-reach environments. In this work, we propose the use of a particular soft robot, which is able to evert and steer from the tip, as a sensor delivery system. The measurement system consists of two major sections: i) the robotic platform for movement purposes; and ii) the sensing part (i.e., a sensor attached to its tip to enable the measurement). As a case study of the use of the soft-growing robot as a sensor-delivery system, the transportation of a wired thermocouple towards a remote hot source was considered. The preliminary results anticipate the suitability of soft continuum robotic platforms for remote applications in confined and constrained environments

    On the use of robust command shaping for vibration reduction during remote handling of large components in tokamak devices

    No full text
    This paper proposes to use robust command shaping methods for reducing the vibrations during remote handling of in-vessel components. The need of deriving efficient vibration control strategies for a safe transportation of large and heavy payloads during maintenance procedures in nuclear fusion reactors is the main motivation behind this work. The approach shapes the reference motion command to the component such that the vibratory modes of the system are canceled. We perform the dynamic simulations of a large in-vessel component of the DEMOnstrating fusion power reactor during a remote handling operation. The simulations shows that the method is a possible solution to reduce the vibrations induced by the motion, in both the transient and residual phases. The benefits introduced by command shaping make the method promising towards building control framework for remote handling of in-vessel components in various tokamak devices

    Modeling and vibration control of flexible mechanical systems for DEMO remote maintenance: Results from the FlexARM project

    No full text
    The goal of this paper is to disseminate the main results achieved within the FlexARM project. The project deals with advanced modeling techniques and predictive control strategies for flexible mechanical systems intended to be used in remote tasks inside advanced nuclear fusion reactors. This article aims at underlying the main aspect of the FlexARM methodology and paves the way towards future research in the field. © 2019 EUROfusion Consortiu

    Development of an Integrated Virtual Reality System with Wearable Sensors for Ergonomic Evaluation of Human–Robot Cooperative Workplaces

    No full text
    This work proposes a novel virtual reality system which makes use of wearable sensors for testing and validation of cooperative workplaces from the ergonomic point of view. The main objective is to show, in real time, the ergonomic evaluation based on a muscular activity analysis within the immersive virtual environment. The system comprises the following key elements: a robotic simulator for modeling the robot and the working environment; virtual reality devices for human immersion and interaction within the simulated environment; five surface electromyographic sensors; and one uniaxial accelerometer for measuring the human ergonomic status. The methodology comprises the following steps: firstly, the virtual environment is constructed with an associated immersive tutorial for the worker; secondly, an ergonomic toolbox is developed for muscular analysis. This analysis involves multiple ergonomic outputs: root mean square for each muscle, a global electromyographic score, and a synthetic index. They are all visualized in the immersive environment during the execution of the task. To test this methodology, experimental trials are conducted on a real use case in a human–robot cooperative workplace typical of the automotive industry. The results showed that the methodology can effectively be applied in the analysis of human–robot interaction, to endow the workers with self–awareness with respect to their physical condition

    Design and development of a novel body scanning system for healthcare applications

    No full text
    This paper presents a novel instant 3D whole body scanner for healthcare applications. It is based on photogrammetry, a digital technology which allows to reconstruct the surface of objects starting from multiple pictures. The motivation behind this work is the development of minimally invasive procedures for instant data acquisitions of anatomical structure. The scanner provides several features of interests in 3D body scanning technologies for the healthcare domains: (i) instant capture of human body models; (ii) magnitude of accuracy in the order of 1 mm; (iii) simplicity of use; (iv) possibility to scan using different settings; (v) possibility to reconstruct the texture. The system is built upon a modular and distributed architecture. In this paper we highlight its key concepts and the methodology which has led to the current product. We illustrate its potential through one of the most promising 3D scanning healthcare applications: the data acquisition and processing of human body models for the digital manufacturing process of prostheses and orthoses. We validate the overall system in terms of conformity with the the initial requirements
    corecore